Extension of Wirtinger's Calculus in RKH Spaces and the Complex Kernel LMS

A unified framework for complex signal processing in RKHS

P. Bouboulis¹ S. Theodoridis¹

¹Department of Informatics and Telecommunications University of Athens Greece

31-08-2010

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- 3 Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the signal Processing Community:

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the signal Processing Community:

Basic Steps:

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the signal Processing Community:

Basic Steps:

Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the signal Processing Community:

Basic Steps:

- Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .
- Perform a linear processing (e.g., adaptive filtering) on the mapped data in \mathcal{H} .

Processing in Reproducing Kernel Hilbert Spaces is gaining in popularity within the signal Processing Community:

Basic Steps:

- Map the finite dimensionality input data from the input space F into a higher dimensionality RKHS \mathcal{H} .
- Perform a linear processing (e.g., adaptive filtering) on the mapped data in \mathcal{H} .

This procedure is equivalent with a non linear processing in F.

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

• For every $x \in \mathcal{X}$, $\kappa(\cdot, x)$ belongs to \mathcal{H} .

Reproducing Kernel Hilbert Spaces.

Consider a linear class \mathcal{H} of real valued functions f defined on a set X (in particular \mathcal{H} is a Hilbert space), for which there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following two properties:

- **①** For every $x \in \mathcal{X}$, $\kappa(\cdot, x)$ belongs to \mathcal{H} .

$$f(x) = \langle f, \kappa(\cdot, x) \rangle_{\mathcal{H}}, \text{ for all } f \in \mathcal{H}, x \in \mathcal{X}.$$
 (1)

Kernel Trick

In particular, If

Kernel Trick

In particular, If

$$\mathcal{X} \ni \mathbf{X} \to \Phi(\mathbf{X}) := \kappa(\cdot, \mathbf{X}) \in \mathcal{H}$$

$$\mathcal{X} \ni \mathbf{y} \to \Phi(\mathbf{y}) := \kappa(\cdot, \mathbf{y}) \in \mathcal{H},$$

then the inner product in \mathcal{H} is given as a function computed on \mathcal{X} :

$$\kappa(x, y) = \langle \kappa(\cdot, y), \kappa(\cdot, x) \rangle_{\mathcal{H}}$$
 k

kernel trick

Advantages

Advantages of kernel-based signal processing:

Advantages

Advantages of kernel-based signal processing:

• The original nonlinear task is transformed into a linear one.

Advantages

Advantages of kernel-based signal processing:

- The original nonlinear task is transformed into a linear one.
- Different types of nonlinearities can be treated in a unified way.

The black box approach.

- The black box approach.
 - $\bullet \ \, \text{Develop the Algorithm in } \mathcal{X}.$

- The black box approach.
 - Develop the Algorithm in \mathcal{X} .
 - Express it, **if possible**, in inner products.

- The black box approach.
 - Develop the Algorithm in X.
 - Express it, **if possible**, in inner products.
 - Replace inner products with kernel evaluations according to the kernel trick.

- The black box approach.
 - Develop the Algorithm in \mathcal{X} .
 - Express it, if possible, in inner products.
 - Replace inner products with kernel evaluations according to the kernel trick.
- Work directly in the RKHS, assuming that the data have been mapped and live in the RKHS H, i.e.,

$$\mathcal{X} \ni \mathbf{X} \to \Phi(\mathbf{X}) := \kappa(\cdot, \mathbf{X}) \in \mathcal{H}.$$

The problem

The major task of this research:

The problem

The major task of this research:

Development of a unified framework for complex valued signal processing in RKHS.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Consider the sequence of examples $(x(1), d(1)), (x(2), d(2)), \dots, (x(N), d(N))$:

Consider the sequence of examples $(\mathbf{x}(1), d(1)), (\mathbf{x}(2), d(2)), \dots, (\mathbf{x}(N), d(N))$:

• In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) - \mathbf{w}^T \mathbf{x}(n)|^2]$.

Consider the sequence of examples $(\mathbf{x}(1), d(1)), (\mathbf{x}(2), d(2)), \dots, (\mathbf{x}(N), d(N))$:

- In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) \mathbf{w}^T \mathbf{x}(n)|^2]$.
- Using the derivative of the cost, the gradient descent update rule becomes: $w(n) = w(n-1) + \mu e(n)x(n)$.

Consider the sequence of examples

$$(x(1), d(1)), (x(2), d(2)), \dots, (x(N), d(N))$$
:

- In a typical LMS filter the goal is to learn a linear input output mapping $f: X \to \mathbb{R}: f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$, so that to minimize the square error $E[|d(n) \mathbf{w}^T \mathbf{x}(n)|^2]$.
- Using the derivative of the cost, the gradient descent update rule becomes: $\mathbf{w}(n) = \mathbf{w}(n-1) + \mu \mathbf{e}(n)\mathbf{x}(n)$.
- The desired output becomes $\hat{d}(n) = \mathbf{w}(n-1)^T \mathbf{x}(n) = \mu \sum_{k=1}^{n-1} e(k) \mathbf{x}(k)^T \mathbf{x}(n)$.

• In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence:

$$(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$$

- In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence: $(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$.

- In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence: $(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$
- Using the derivative in the RKHS the update rule for the KLMS becomes: $\mathbf{w}(n) = \mathbf{w}(n-1) + \mu \mathbf{e}(n)\Phi(\mathbf{x}(n))$.

- In Kernel LMS, firstly we transform the input space to a RKHS \mathcal{H} to obtain the sequence: $(\Phi(\mathbf{x}(1)), d(1)), (\Phi(\mathbf{x}(2)), d(2)), \dots, (\Phi(\mathbf{x}(N)), d(N)).$
- We apply the LMS procedure to the sequence of examples minimizing the cost function $E[|d(n) \langle \Phi(\mathbf{x}(n)), \mathbf{w} \rangle_{\mathcal{H}}|^2]$, where now $\mathbf{w} \in \mathcal{H}$.
- Using the derivative in the RKHS the update rule for the KLMS becomes: $\mathbf{w}(n) = \mathbf{w}(n-1) + \mu \mathbf{e}(n)\Phi(\mathbf{x}(n))$.
- The filter output of the KLMS is: $\hat{d}(n) = \langle \mathbf{x}(n), \mathbf{w}(n-1) \rangle_{\mathcal{H}} = \mu \sum_{k=1}^{n-1} e(k) \frac{\kappa(\mathbf{x}(k), \mathbf{x}(n))}{\kappa(\mathbf{x}(k), \mathbf{x}(n))}$.

Since he RKHS \mathcal{H} can be an infinite dimensional space, the derivative has to be considered in the Fréchet generalized notion:

Since he RKHS \mathcal{H} can be an infinite dimensional space, the derivative has to be considered in the Fréchet generalized notion:

An operator $T: \mathcal{H} \to F$ is said to be Fréchet differentiable at f_0 , if there exists $u \in \mathcal{H}$ such that the limit

$$\lim_{\|h\|_{\mathcal{H}} \rightarrow 0} \frac{T(\textit{f}_0 + h) - T(\textit{f}_0) - \langle \textit{u}, \textit{h} \rangle_{\mathcal{H}}}{\|\textit{h}\|_{\mathcal{H}}} = 0.$$

This definition might seems a little "strange", but it originates from the classical definition of differentiability.

This definition might seems a little "strange", but it originates from the classical definition of differentiability. For example, consider the function $f : \mathbb{R} \to \mathbb{R}$.

This definition might seems a little "strange", but it originates from the classical definition of differentiability.

For example, consider the function $f : \mathbb{R} \to \mathbb{R}$.

We say that *f* is differentiable at *x* iff the following limit exists:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

After some elementary algebra one obtains:

After some elementary algebra one obtains:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} - f'(x) \right) = 0$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x) - f'(x) \cdot h}{h} \right) = 0.$$

After some elementary algebra one obtains:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} - f'(x) \right) = 0$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x) - f'(x) \cdot h}{h} \right) = 0.$$

The last relation is the kick off point of the Fréchet differentiability in general Hilbert spaces:

After some elementary algebra one obtains:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} - f'(x) \right) = 0$$

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x) - f'(x) \cdot h}{h} \right) = 0.$$

The last relation is the kick off point of the Fréchet differentiability in general Hilbert spaces:

$$\lim_{\|h\|_{\mathcal{H}} \to 0} \frac{T(\mathit{f}_0 + h) - T(\mathit{f}_0) - \langle u, h \rangle_{\mathcal{H}}}{\|h\|_{\mathcal{H}}} = 0.$$

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Complex and real derivatives

Consider a complex function

$$f: \mathbb{C} \to \mathbb{C}: f(z) = f(x+iy) = f_r(z) + if_i(z).$$

Complex and real derivatives

Consider a complex function

$$f:\mathbb{C}\to\mathbb{C}:f(z)=f(x+iy)=f_r(z)+if_i(z).$$

We will say that f is differentiable in the complex sense at c (or that it has complex derivative at c), iff the limit

$$\lim_{z\to c}\frac{f(z)-f(c)}{z-c}$$

exists.

Complex differentiability is a very strict notion.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in \mathbb{R}) that ARE NOT complex differentiable.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in R) that ARE NOT complex differentiable.
- Example: $f(z) = |z|^2 = zz^*$.

- Complex differentiability is a very strict notion.
- In complex signal processing we often encounter functions (e.g., the cost functions, which are defined in R) that ARE NOT complex differentiable.
- Example: $f(z) = |z|^2 = zz^*$.
- In these cases one has to express the cost function in terms of its real part f_r and its imaginary part f_i , and use real derivation with respect to f_r , f_i .

 This approach leads usually to cumbersome and tedious calculations.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.
- It is based on simple rules and principles.

- This approach leads usually to cumbersome and tedious calculations.
- Wirtinger's Calculus provides an alternative equivalent formulation.
- It is based on simple rules and principles.
- These rules bear a great resemblance to the rules of the standard complex derivative.

Wirtinger's Calculus considers two forms of derivatives:

Wirtinger's Calculus considers two forms of derivatives:

The ℝ-derivative:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} + \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} - \frac{\partial f_r}{\partial y} \right),$$

Wirtinger's Calculus considers two forms of derivatives:

• The \mathbb{R} -derivative:

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} + \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} - \frac{\partial f_r}{\partial y} \right),$$

The conjugate ℝ-derivative:

$$\frac{\partial f}{\partial z^*} = \frac{1}{2} \left(\frac{\partial f_r}{\partial x} - \frac{\partial f_i}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_i}{\partial x} + \frac{\partial f_r}{\partial y} \right).$$

Simple Rules

• Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.

Simple Rules

- Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.
- It can be proved that $\frac{\partial f}{\partial z}$ can be easily evaluated as the standard complex derivative taken with respect to z (thus treating z^* as a constant).

Simple Rules

- Wirtinger's rules are based on the fact that any complex functions, which it is differentiable in the real sense, can be written in the form $f(z, z^*)$.
- It can be proved that $\frac{\partial f}{\partial z}$ can be easily evaluated as the standard complex derivative taken with respect to z (thus treating z^* as a constant).
- Similarly $\frac{\partial f}{\partial z^*}$ can be easily evaluated as the standard complex derivative taken with respect to z^* (thus treating z as a constant).

Examples

• Let
$$f(z) = z + z^*$$
. Then $\frac{\partial f}{\partial z} = 1$, $\frac{\partial f}{\partial z^*} = 1$.

Examples

• Let
$$f(z) = z + z^*$$
. Then $\frac{\partial f}{\partial z} = 1$, $\frac{\partial f}{\partial z^*} = 1$.

• Let
$$f(z) = z^2$$
. Then $\frac{\partial f}{\partial z} = 2z$, $\frac{\partial f}{\partial z^*} = 0$.

Examples

- Let $f(z) = z + z^*$. Then $\frac{\partial f}{\partial z} = 1$, $\frac{\partial f}{\partial z^*} = 1$.
- Let $f(z) = z^2$. Then $\frac{\partial f}{\partial z} = 2z$, $\frac{\partial f}{\partial z^*} = 0$.
- Let $f(z) = |z|^2 = zz^*$. Then $\frac{\partial f}{\partial z} = z^*$, $\frac{\partial f}{\partial z^*} = z$.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Extension of Wirtinger's Calculus

• Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., \mathbb{C}^{ν}).

Extension of Wirtinger's Calculus

- Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., \mathbb{C}^{ν}).
- The main rules and principles are similar.

Extension of Wirtinger's Calculus

- Wirtinger's Calculus can be easily extended to any finite dimensional complex space (i.e., \mathbb{C}^{ν}).
- The main rules and principles are similar.
- In order to extend it to a complex RKHS (where the dimensionality can be infinite), we need to employ the notion of Fréchet differentiability.

• Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r, T_i are defined on \mathbb{H} .

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r, T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r , T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective \mathbb{R} -derivative and conjugate \mathbb{R} -derivative of T as follows:

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_I + iT_I$, where T_I , T_I are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective \mathbb{R} -derivative and conjugate \mathbb{R} -derivative of T as follows:
- R-derivative:

$$\nabla_{\mathbf{f}}\mathbf{T} = \frac{1}{2} \left(\nabla_{r} T_{r} + \nabla_{i} T_{i} \right) + \frac{i}{2} \left(\nabla_{r} T_{i} - \nabla_{i} T_{r} \right).$$

- Consider a complex RKHS \mathbb{H} and a complex operator $T = T_r + iT_i$, where T_r , T_i are defined on \mathbb{H} .
- Let $\nabla_r T_r$, $\nabla_r T_i$, $\nabla_i T_r$, $\nabla_i T_i$ be the respective Fréchet derivatives (gradients).
- We can define the respective ℝ-derivative and conjugate ℝ-derivative of *T* as follows:
- R-derivative:

$$\nabla_{\mathbf{f}}\mathbf{T} = \frac{1}{2} \left(\nabla_{r} T_{r} + \nabla_{i} T_{i} \right) + \frac{i}{2} \left(\nabla_{r} T_{i} - \nabla_{i} T_{r} \right).$$

● conjugate R-derivative:

$$\nabla_{\mathbf{f}^*} \mathbf{T} = \frac{1}{2} \left(\nabla_r T_r - \nabla_i T_i \right) + \frac{i}{2} \left(\nabla_r T_i + \nabla_i T_r \right).$$

Rules and Properties

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

Rules and Properties

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

• If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.

Several rules and properties of the ordinary Wirtinger's Calculus can be easily extended:

- If T is f-holomorphic (i.e., it has a Taylor series expansion with respect to f), then $\nabla_{f^*}T = \mathbf{0}$.
- If T is f^* -holomorphic (i.e., it has a Taylor series expansion with respect to f^*), then $\nabla_f T = \mathbf{0}$.
- $\bullet (\nabla_{f^*} T)^* = \nabla_f T^*.$

Any gradient descent based algorithm minimizing a real valued operator T(f) is based on the update scheme:

$$\mathbf{f}_n = \mathbf{f}_{n-1} - \mu \cdot \nabla_{\mathbf{f}^*} \mathbf{T}(\mathbf{f}_{n-1}).$$

Any gradient descent based algorithm minimizing a real valued operator T(f) is based on the update scheme:

$$\mathbf{f}_n = \mathbf{f}_{n-1} - \mu \cdot \nabla_{\mathbf{f}^*} \mathbf{T}(\mathbf{f}_{n-1}).$$

Remark: We have used f in place of w (used before) to stress the fact that the RKHS \mathbb{H} can be of infinite dimension.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- 3 Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Mapping to the complex RKHS

• Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$

Mapping to the complex RKHS

- Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$
- Let $\mathbf{z}(n) = \mathbf{x}(n) + i\mathbf{y}(n), \, \mathbf{x}(n), \, \mathbf{y}(n) \in \mathbb{R}^{\nu}.$

Mapping to the complex RKHS

- Consider the sequence of examples $(z(1), d(1)), (z(2), d(2)), \dots (z(N), d(N)),$ where $d(n) \in \mathbb{C}$ and $z(n) \in \mathbb{C}^{\nu}$
- Let $\mathbf{z}(n) = \mathbf{x}(n) + i\mathbf{y}(n), \, \mathbf{x}(n), \, \mathbf{y}(n) \in \mathbb{R}^{\nu}.$
- We map the points z(n) to the complex RKHS \mathbb{H} an appropriate complex mapping Φ .

Choice of the complex mapping Φ

• Φ can be any complex kernel, e.g., $\kappa(x, y) = \frac{1}{1 - y^* x}$ (Szego kernel).

Choice of the complex mapping Φ

- Φ can be any complex kernel, e.g., $\kappa(x,y) = \frac{1}{1-y^*x}$ (Szego kernel).
- Φ can be the result of complexifing real kernels:

$$\Phi(\mathbf{z}(n)) = \Phi(\mathbf{z}(n)) + i\Phi(\mathbf{z}(n))$$

= $\kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right) + i \cdot \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right),$

Choice of the complex mapping Φ

- Φ can be any complex kernel, e.g., $\kappa(x,y) = \frac{1}{1-y^*x}$ (Szego kernel).
- Φ can be the result of complexifing real kernels:

$$\Phi(\mathbf{z}(n)) = \Phi(\mathbf{z}(n)) + i\Phi(\mathbf{z}(n))$$

= $\kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right) + i \cdot \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right),$

 The latter choice has been used in this work, using the real gaussian kernel. This is because the behavior of such kernels is well understood in SP applications.

Choice of the complex mapping Φ

- Φ can be any complex kernel, e.g., $\kappa(x,y) = \frac{1}{1-y^*x}$ (Szego kernel).
- Φ can be the result of complexifing real kernels:

$$\begin{aligned} \Phi(\mathbf{z}(n)) &= \Phi(\mathbf{z}(n)) + i\Phi(\mathbf{z}(n)) \\ &= \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right) + i \cdot \kappa \left((\mathbf{x}(n), \mathbf{y}(n))^T, \cdot \right), \end{aligned}$$

- The latter choice has been used in this work, using the real gaussian kernel. This is because the behavior of such kernels is well understood in SP applications.
- Note that when complexified real kernels are employed, the complex kernel LMS CANNOT be derived by applying the standard kernel trick on the complex LMS (details in the paper).

• We apply the complex LMS to the transformed data:

$$(\Phi(z(1)), d(1)), (\Phi(z(2)), d(2)), \dots (\Phi(z(N)), d(N)).$$

- We apply the complex LMS to the transformed data: $(\Phi(z(1)), d(1)), (\Phi(z(2)), d(2)), \dots (\Phi(z(N)), d(N)).$
- The objective of CKLMS is to minimize

$$E[|e(n)|^2] = E[|d(n) - \langle \Phi(\mathbf{z}(n), \mathbf{f} \rangle_{\mathbb{H}}^2],$$

at each instance n.

Using the rules of Wirtinger's calculus in \mathbb{H} we obtain the following update rule:

Using the rules of Wirtinger's calculus in \mathbb{H} we obtain the following update rule:

$$\mathbf{f}(n) = \mathbf{f}(n-1) + \mu \mathbf{e}(n)^* \cdot \mathbf{\Phi}(\mathbf{z}(n)),$$

where f(n) denotes the estimate at iteration n.

Assuming that $\mathbf{f}(0) = \mathbf{0}$, the repeated application of the weight-update equation gives:

Assuming that $f(0) = \mathbf{0}$, the repeated application of the weight-update equation gives:

$$f(n) = f(n-1) + \mu e(n)^* \Phi(z(n))$$

$$= f(n-2) + \mu e(n-1)^* \Phi(z(n-1))$$

$$+ \mu e(n)^* \Phi(z(n))$$

$$= \sum_{k=1}^n e(k)^* \Phi(z(k)).$$

The filter output at iteration *n* becomes:

The filter output at iteration *n* becomes:

$$\begin{split} \hat{d}(n) = & \langle \mathbf{\Phi}(\mathbf{z}(n)), \mathbf{w}(n-1) \rangle_{\mathbb{H}} \\ = & \mu \sum_{k=1}^{n-1} e(k) \langle \mathbf{\Phi}(\mathbf{z}(n)), \mathbf{\Phi}(\mathbf{z}(k)) \rangle_{\mathbb{H}} \\ = & 2\mu \sum_{k=1}^{n-1} e(k) \kappa(\mathbf{z}(n), \mathbf{z}(k)) \\ = & 2\mu \sum_{k=1}^{n-1} \Re[e(n)] \kappa(\mathbf{z}(n), \mathbf{z}(k)) + 2\mu \cdot i \sum_{k=1}^{n-1} \Im[e(n)] \kappa(\mathbf{z}(n), \mathbf{z}(k)), \end{split}$$

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- 3 Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

Sparsification

 CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....

Sparsification

- CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....
- Results: Increasing memory and computational requirements.

Sparsification

- CKLMS and other kernel based adaptive filtering algorithms require a growing network of training centers z(0), z(1),..., z(n),....
- Results: Increasing memory and computational requirements.
- A sparse solution is needed.
- Any sparsification algorithm can be employed. Details are given in the paper.

Outline

- Signal Processing with Kernels
 - Preliminaries
 - Kernel LMS
- Wirtinger's Calculus
 - The Complex Case: Wirtinger's Calculus
 - Wirtinger's Calculus in complex RKHS
- Complex Kernel LMS
 - Formulation
 - Sparsification
 - Experiments

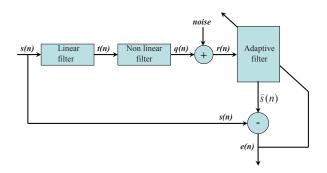


Figure: The equalization problem.

•
$$t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 - 0.7i) \cdot s(n-1)$$

•
$$t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 - 0.7i) \cdot s(n-1)$$

•
$$q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$$

- $t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 0.7i) \cdot s(n-1)$
- $q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$
- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.

•
$$t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 - 0.7i) \cdot s(n-1)$$

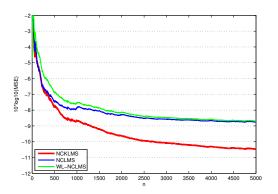
•
$$q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$$

- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.
 - 1 This input is circular for $\rho = \sqrt{2}/2$

- $t(n) = (-0.9 + 0.8i) \cdot s(n) + (0.6 0.7i) \cdot s(n-1)$
- $q(n) = t(n) + (0.1 + 0.15i) \cdot t^2(n) + (0.06 + 0.05i) \cdot t^3(n)$
- $s(n) = 0.70(\sqrt{1 \rho^2}X(n) + i\rho Y(n))$, where X(n) and Y(n) are gaussian random variables.
 - 1 This input is circular for $\rho = \sqrt{2}/2$
 - **2** highly non-circular if ρ approaches 0 or 1.

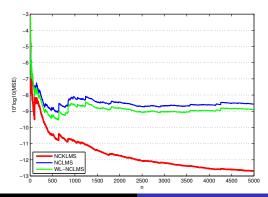
Circular Data

Learning curves for KNCLMS ($\mu = 1/2$), NCLMS ($\mu = 1/16$) and WL-NCLMS ($\mu = 1/16$) (filter length L = 5, delay D = 2) in the nonlinear channel equalization, for the **circular** input case.



Non Circular Data

Learning curves for KNCLMS ($\mu = 1/2$), NCLMS ($\mu = 1/16$) and WL-NCLMS ($\mu = 1/16$) (filter length L = 5, delay D = 2) in the nonlinear channel equalization, for the **non-circular** input case ($\rho = 0.1$).



Main contributions of this work:

The development of a wide framework that allows real-valued kernel algorithms to be extended to treat complex data.

- The development of a wide framework that allows real-valued kernel algorithms to be extended to treat complex data.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.

- The development of a wide framework that allows real-valued kernel algorithms to be extended to treat complex data.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.
- The development of the Complex Kernel LMS algorithm as a particular example.

- The development of a wide framework that allows real-valued kernel algorithms to be extended to treat complex data.
- The extension of Wirtinger's Calculus in complex RKHS as a means for the elegant and efficient computations of gradients that are involved in many adaptive filtering algorithms.
- The development of the Complex Kernel LMS algorithm as a particular example.
 - Experiments verify that CKLMS gives significantly better results compared to CLMS and WL-CLMS for nonlinear channels.